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Abstract—The purpose of this artidle is to demonstrate the applicability of microreactors for use in catalytic reac-
tions at elevated temperatures. Microchannels were fabricated on both sides of a silicon wafer by wet chemical etch-
ing after pattern transfer using a negative photoresist. The walls of the reactor channel were coated with a platinum
layer, for use as a sample catalyst, by sputtering. A heating element was installed in the channel on the opposite surface
of the reactor channel. The reactor channel was sealed gas-tight with a glass plate by using an anodic bonding tech-
nique. A small-scale palladium membrane was also prepared on the surface of a 50-wm thick copper film. In the mem-
brane preparation, a negative photoresist was spin-coated and solidified to serve as a protective film. A palladivm layer
was then electrodeposited on the other uncovered surface. After the protective film was removed, the resist was again
spin-coated on the copper surface, and a pattern of microslits was transferred by photolithography. After development,
the microslits were electrolitically etched away, resulting in the formation of a palladium membrane as an assemblage
of thin layers formed in the microslits. The integration of the microreactor and the membrane is currently under way.
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INTRODUCTION tors and analytical instruments, which are operated at temperatures
below 400K. Here, the discussion 1s limited to microreactors that
can potentially be used at elevated tem peratures.

The small scale of microreactors naturally leads to certain unmque
characteristics, which are shown m Fig. 1. The heat transfer rate
between the reactor surface and reactants is substantial, compared
to that of conventional large-scale chemical reactors. Thus, microre-
actors are suitable for reactions, the temperatures of wlich must be
precisely and rapidly confrolled [Léwe et al, 1999; Srinivasan et
al,, 1997, Quiram et al., 2000, Hsing et al.,, 2000; Lee et al, 2000].
Microreactors are also useful for producing small amounts of toxic or
explosive chemicals [Hessel et al., 2000, Kestenbaum et al., 2000].
The point-of-use production of these compounds may mimmize
associated risks during transportation and storage.

The quantity of production can be mareased by assembling a mum-
ber of microreactors mto a module, as shown m Fig. 2. Microreac-
tors can also be utilized for the screeming of catalysts, m conjune-
tion with combinatonal chemistry. In such systems, different cat-

Microreactors are composed of channels, the dimensions of which
are 1-1,000 pum m width and 1-100 cm 1 length [Lerou end Ng,
1996, Freemantle, 1999, Martin et al., 1999, Haswell and Skelton,
2000;, Ehrfeld 2000, Ehrfeld et al., 2000, Jensen, 2001; Wérz etal.,
2001]. The term “muicroreactars™ 1s often used to desenbe differen-
tial reactors designed for testing catalytic reactions or small-scale
reactors used at an early stage of scaleup. Tn this article, however,
mucroreactors mndicate reactors that are constructed as the fimal stage
of process development. Although a mumber of studies on microre-
actors have been reported, many have focused on biorelated reac-
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Fig. 2. Scaleup of microreactors.
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Fig. 3. A microreador system.

alysts are impregnated on porous supports in microchannels. In con-
ventional large-scale reactors, on the other hand, temperature and
reaction time of the intermediate steps in a consecutive reaction can
be varied only with great difficulty. Those parameters may be easily
changed in microreactor systems, resulting in an increase in the yields
of the intermediate products [Stépsnek et al, 1999; Liauw et al,
2000]. As shown in Fig. 3, microreactors are interfaced with other
elements, such as pumps, flow control valves, pressure regulating
valves heaters, coolers, temperature controllers, separation units

Table 1. Readions in microreactors

{membrane separators, extractors, etc.), and chemical analyzers.
Further investigations of these components are also needed.

Table 1 shows some reactions that have been carried out in micro-
reactors. Most are exothermic reactions over supported catalysts,
and the formation ofhot spots in the catalyst bed can be prevented
because of sufficient hea removal. Microreactors are also suitable
for two-phase reactions for gasliquid and liquid-liquid systems,
such as fluorination [Bums and Ramshan; 1999; Jihnisch et al.,
2000], =o long as the pressure drops in the microchannels iz within
apermitted limit.

A wide variety of materials can be used for the fabrication of mi-
croreactors, as shown in Table 2. Plastics are suitable for use at room
tem perature. Metals are machinable; ceramics are highly stable
against corrosion at high temperatures; and diamonds have the high-
est thermal conductivity. The preparation of catalysts is also a key
factor for microreactors. Wires or particles can be packed in micro-
channe ks [Wilson and McCreedy, 2000; Martin et al, 1999; Taubota
et al., 2000; Losey et al, 2000]. A catalyst layer can be coated by
physical vapor deposition [Cui et al, 2000; Franz et al., 2000, Ku-
sakabe et al., 2001a] and chemical vapor deposition [Janicke et al.,
2000]. These dry processes are appropriate for forming a thin film
but not for producing a catalyst support layer with a wide internal

Reaction Phases Catalyst

Properties of reaction and reactor

Reference

Fluorination of organic
compounds

Gas-liquid No

Nitration of benzene Liquid-Liquid No

Falling li quid film reactor with rapid heat
transfer, hi ghly exothermicreaction,
hazardous compounds

Two-phase fl ow in a capillary tube

Chambers and Spink [1999]
Chambers et al. [1999]
Tihnisch et al. [2000]
Burns and Ramshaw [1999]

reactor, production of 6 ton per year

Suzuki reaction Liquid Solid, Pd/Si0O, Flow injection-type reactor Fletcher et al. [1999]
{coupling) Greenway et al. [2000]

Dehydrogenati on of Gas Solid Sputtered Pt catalyst Cui et al. [2000]
cyclohexane

Dehydration of alcohols  Gas Solid Cyclic feeds Wilgon and McCreedy [2000]

Oxidation of H, with O, Gas Solid, Pt/Al,O, Reactor with rapid heat transfer Tanicke et al. [2000]

Catalytic combn. of Gas Solid, NiO Martin et al. [1999]
methane

Production of HCN Gas Solid, Pt CH,+NH;+(3/2)0, Hessel et al. [2000]

Oxidn. of NH; Gas Solid, Pt Rapid heat transfer Srinivasan et al. [1997 ]

Partial oxidn. of CH, Gas Solid, Rh Honeycomb reactor, high temperature Mayver et al. [2000]

(1463 K)

Partial oxidn. of C.H, Gas
Partial oxidn. of Gas
methylformamide

Solid, Ag foils
Solid

Prevention of hot spots, explosive
Production of isocy anate, poisonous, high
conversion (higher than 95%g)

Kesterbaum et al. [2000]
Citedin Lerou and Ng [1996]

Table 2. Materials used for the fabrication of microreactors

Material Heat conductivity Temperature stability Transparency Workability Cost
Plastic # e & & ©J
Glass = = i O O
Ceramic 2 (o e 2 O
Silicon Z = > O O
Metal i . > & )
Diamond @ O o d ~
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surface area. Kusawe et al [2000] stacked alumina plates that were
produced by anodic oxidation of aluminum wafers, and impreg-
nated catalytic species m the micropores of the plates. Sadykov et
al. [2000] used a monolith with thn walls as the catalyst support
Greenway et al. [2000] formed a Pd-supported silica layer by de-
postition of precursor slurry m microchannels.

FABRICATION OF A MICROREACTOR

Figs. 4 and 5 show the procedure used for the microfabrication
and the prepared microreactor, respectively [Tsubota et al., 2000,
Kusakabe et al., 2001a]. The micrareactor was constructed on a (100)
S1 wafer of 10 mm»40mm. Both surfaces of the wafer were oxi-
dized m a flow of arrat 1,273 K for 61, and one surface was spin-
coated with a negative photoresist. The resultant resist was pre-baked
at 413K for 3mm, and a pattern for a preheater, a reactor, and a
thermocouple well was transferred by using a microchermel photo-
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Fig. 4. Fabrication procedure for a microreactor.

=l U

Prehéater Re‘actor
Thermocouple well

Top view

[ ]Glass

Side view B U

Glass

Pt h}aater
r i

1 4
Bottom view I J

Fig. 5. A microreactor prepared.

lithography techmique. A channel pattern for the heating element
was then transferred to the other surface of the wafer by the same
procedure. After the resist was post-baked at 413 K for 10 mun, the
unexposed part of the resist was removed. The 510, layer on the
unexposed area was then removed by immersing the wafer in an
HF end NH.F buffer solution at room temperature for 10 mm. After
all the resist was removed, the microchannel pattern was formed
by etching the wafer in a 30% KOH solution at 303K for 25h
The reactor charmel was 400 Pm m upper width, 280 Um m lower
width, 100 pm in depth and 78 mm in length. Tn the upstream por-
tion of the reactor chennel, a preheater section, 200 pim m width,
100 lm m depth and 95 mm n length, was mserted.

The surface with the reactor chammel was again spm-coated with
the negative photoresist. A mask with the pattern of the reactor chan-
nel (with no preheater section and no thermocouple well) was align-
ed to the wafer, and, by the same pattern transfer procedure, all the
area except for the reactor charmel was covered with the resist. The
wafer surface was coated with a platinum layer by sputtering, and
the resist was then lifted off. Thus, the walls of the reactor charmel
were coated with a layer of platinum, which functioned as a cat-
alyst A platmum heating wire (100 lm in diameter and 20 cm n
length) was placed m the charmel, wiich was formed on the surface
opposite to the reactor channel.

Glass plates, 1-mm m thickness, were used to cover the reactor
charmel, and two 300-(m diameter holes were drilled at locations
corresponding to the inlet and outlet of the reactor channel. A 300-
Um diameter stainless steel tube was mserted mn each hole and was
fixed in place with an inorganic adhesive. The wafer and the glass
cover were then bonded by an anodic bondmg techmuque at 673 K.
The tightness of the gas seal was confirmed, since no bubbles were
observed when the chamnel was pressurized and placed in water.
The surface of the heatmg element was also covered with a glass
plate by anodic bonding. A thermocouple, composed of 100-Um
diameter element wires, was mstalled in the thermocouple charmel

The hydrogenation of benzene was camied out m the reactor chan-
nel as a model reaction. The flow rates of benzene and hydrogen
were controlled with mass flow controllers, and the maxmmum total
flow rate was 1 mL/min. Concentrations at the outlet of the reactor
were analyzed by means of a micro gas chromatograph with a ther-
mal conductivity detector. The Pt catalyst was activated m hydro-
gen at 773 K for 3h prior to the start of the reaction. No deactiva-
tion was observed under the reaction conditions used. The mtial
reaction rate constarts were determined to be 0.7 and 1,457, re-
spectively. Details of this reaction will be reported elsewhere [Kusa-
kabe et al., 2001a].

FABRICATION OF A MEMBRANE SEPARATOR

As shown in Fig. 3, the microreactor system should be com-
posed of separation steps. Punification of the hydrogen can mprove
the efficiency of small-scale fuel cells with polymer electrolytes
[Mex and Miiller, 2000]. A mumber of studies have recently reported
on the preparation of thin palladium-based membranes, which would
be expected to separate hydrogen at high permeation rates. Fig. 6
shows the mechanism of hydrogen separation on a palladium mem-
brane. Hydrogen 15 dissociated to protons on the feed side of the
membrane, and the protons are then re-associated to molecular hy-
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Fig. 7. Fabrication procedure for a palladium membrane.

drogen on the permeate side. Fig. 7 shows the procedure developed
for the preparation of a thin, small-scale palladium membrane [Ku-
sakabe et al., 2001b]. The substrate was a 50-m thick polished cop-
per sheet (10mm*1 0mm). One side of the substrate was spin-coated
with a negative photoresist, exposed, end then baked at 413 K for
3 min and (step 1). The other side of the substrate was polished with
a series of fine alumina powder (particle size=1.0 and 0.3 un), after
which the plate was nnsed with distilled water. A palladium layer
was formed by electrodeposition on the entire uncovered surface
of the copper plate, which was used as the cathode, and a platinum
plate was used as the anode. The deposition of palladium was car-
ried out at a cathode current density of 5-15mA/em’ for 10-30 min
at room temperature (step 2). The bath composiion was as fol-
lows: PAC1,=198 g/L.; citric acid=21.5g/1.; and (NH,),30,=50.0

May, 2001

g/L. The pH was adjusted to 7 with NH,OH.

The resist on the copper surface was then removed (step 3), and
the negative resist was agamn spin-coated on the copper surface and
pre-baked at 413 K for 3 min (step 4). A mask with a pattern of mi-
croslits (100 um in width and 4 mm in length) drawn within a S-mm
diameter circle was aligned to the substrate, and the pattern was
transferred by photolithography via contact printing (step 5). The
resist was exposed, postbaked at 413 K for 10 mm, and the wmex-
posed part of the resist was removed m a developer. The uncov-
ered copper surface was then electroetched in a 3 wt%o H,30, so-
luticn at an anodic current density of 30 mAsem’® for 210 min (step
6). The microslits, which were thus produced, exposed the palla-
dium layer to the other side. The residual photoresist was com-
pletely removed afterward (step 7). The thickness of the deposited
palladium layer was less than 10 pm.

The membrane was cut out in the shape of a disc, Smm m di-
ameter, and was then sandwiched between copper gaskets with an
opening 5 mm in diameter. The set of three plates was fixed ina
permeation test cell 5o as to be gas-tight. Smgle-component hydro-
gen or nitrogen was fed to the feed side, and a sweep gas (argon)
was fed to the permeate side. The pressures on the feed and perme-
ate sides were both mamtamed at 101.3 kPa. The partial pressure
of hydrogen and nitrogen on the permeate side was maintained at a
low level. The temperature of the cell was mamtamed at 573-873 K.
The hydrogen permeation mcreased with increasing temperature,
and a separation factor of 120 was observed at 873 K. The hydro-
gen permeance 1s equivalent to the results reported for thin palla-
dium membranes [ Yan et al., 1994; Morooka et al., 1995]. Details
of these expenmental results will be reported elsewhere [Kusakabe
et al,, 2001b]. Tlus hydrogen-selective membrane can be applied
to the purification of the reformed gas, which is fed to polymer elec-
trolyte fuel cells. Fig. 8 shows an example of the polymer electro-
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Fig. 8. Stacked frames of a small-scale fuel cell system.
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lyte fuel cells combined with the hydrogen purification using a Pt
membrane. Heat exchangers can be inserted if necessary.

CONCLUSIONS

A self-heating microreactor was constructed on a (100} silicon
wafer by means of photolithography, wet etching, and sputtering
techmques. The reactor was successfully used m a catalytic reac-
tion at elevated temperatires. A palladiim membrane, approximately
3 um in thickness, was also fabricated by a combination of photo-
lithography and electrolysis. The separation factor of hydrogen to
nitrogen was 120 at 873 K. These results suggest that the construc-
tion of a micrereactor combined with a small-sized membrane se-
parator 1s a distinet possibility.
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